If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+80x+80=0
a = 5; b = 80; c = +80;
Δ = b2-4ac
Δ = 802-4·5·80
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-40\sqrt{3}}{2*5}=\frac{-80-40\sqrt{3}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+40\sqrt{3}}{2*5}=\frac{-80+40\sqrt{3}}{10} $
| 6(5-x)=-45 | | 5(5x-6)=-67 | | 11(x+4)=132 | | 3a^2+20=19a | | 7^3x=1,2 | | 11x=8x=3(5-2x) | | t÷5-7=11 | | 7m-37=43 | | g+25/5=7 | | 8(z+10)=96 | | 3(f+7)=57 | | 19-2f=5 | | 11-2c=1 | | 11−2c=1 | | f/3+12=14 | | 4(-5y+1)=-96y= | | 5n-5=n+10= | | 6x=5x/3 | | 6=10−2r | | 2x/5-2/3=x/2+6 | | m/3+8=10 | | 4(3x-1)=2(5x-12) | | 12(11+3n)=12n | | 3(5x+3)=11x+x+27 | | 216x=6x+10. | | -7=1+2/3r | | -7=1+2/3f | | -4(8+n)=-104 | | -2/5(3x-5)=1/4(2x-3) | | 1/4(x-2)=1/3x+2 | | 15+1/3p=4 | | D+(d-23)=51 |